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Abstract. We discuss the structure of the equilibrium states of a regularized Keller-Segel model describing
the chemotaxis of bacterial populations. We consider the limit of high degradation of the secreted chemical
where analytical results can be obtained. Below a critical effective temperature, the system experiences
a second order phase transition from a homogeneous phase to an inhomogeneous phase formed by two
domains with uniform concentration separated by a thin interface (domain wall). We study the properties
of the interface and determine the bifurcation between a circular shape (spot) and a rectangular shape
(stripe) as a function of the control parameters. We show the analogy with the structure of Jupiter’s great
red spot which also consists in two phases with uniform potential vorticity separated by a thin annular
jet.

PACS. 05.20.-y Classical statistical mechanics – 05.45.-a Nonlinear dynamics and chaos – 05.40.Jc
Brownian motion – 87.10.+e General theory and mathematical aspects

1 Introduction

The name chemotaxis refers to the motion of organisms
induced by chemical signals [1]. In some cases, the bi-
ological organisms (bacteria, amoebae, endothelial cells,
ants...) secrete a substance (pheromone, smell, food,...)
that has an attractive effect on the organisms themselves.
Therefore, in addition to their diffusive motion, they move
preferentially along the gradient of concentration of the
chemical they secrete (chemotactic flux). When attrac-
tion prevails over diffusion, the chemotaxis can trigger
a self-accelerating process until a point at which aggre-
gation takes place. This is the case for the slime mold
Dictyostelium discoideum and for the bacteria Escherichia
coli. This is referred to as chemotactic collapse. A model of
slime mold aggregation has been introduced by Patlak [2]
and Keller and Segel [3] in the form of two coupled dif-
ferential equations. A simplified version of this model has
been extensively studied in the case where the degradation
of the secreted chemical can be neglected and an imme-
diate production is assumed [4]. In that case, the Keller-
Segel equations become isomorphic to the Smoluchowski-
Poisson system describing self-gravitating Brownian par-
ticles [5]. A detailed study of the Smoluchowski-Poisson
system has been performed by Chavanis and Sire [6–15]
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in a recent series of papers. These results also apply to
the chemotactic problem provided that we properly re-
interpret the parameters (in particular, the mass M used
in biology plays the same role as the inverse temperature
T−1 used in gravity). In d = 1, there is no collapse (except
at T = 0) and the evolution of the mass profile satisfies
a Burgers equation. In d = 2, the system reaches a sta-
tistical equilibrium state for T > Tc and undergoes a self-
similar collapse for T = Tc or a quasi self-similar collapse
for T < Tc leading ultimately to a Dirac peak. In d ≥ 3,
the system first undergoes a self-similar collapse leading
to a finite time singularity (the density profile behaves like
ρ ∝ r−2 at t = tcoll) followed by the formation of a Dirac
peak in the post-collapse regime. Long-lived metastable
gaseous states can also exist above a critical temperature
Tc. Interestingly, most of these results have been obtained
analytically. On the other hand, a vast number of rigor-
ous results concerning the existence and unicity of the
solutions of the Keller-Segel model and the conditions of
blow-up have been obtained in the community of applied
mathematics. We refer to the review of Horstmann [16] for
a connection to the mathematical literature. A summary
of the most physical results obtained for the Keller-Segel
model and the Smoluchowski-Poisson system will be given
in Section 5.
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In this paper, we consider novel aspects of the Keller-
Segel model. We first introduce a regularized model that
prevents finite time-blow up and the formation of (unphys-
ical) singularities like infinite density profiles and Dirac
peaks. In this model, the local density of cells is bounded
by a maximum value ρ(r, t) ≤ σ0 which takes into ac-
count finite size effects and filling factors. Indeed, since
the cells have a finite size, they cannot be compressed in-
definitely. Therefore, the Dirac peaks (singularities) are
replaced by smooth density profiles (aggregates). With
this regularization, there exists steady solutions (similar
to the Fermi-Dirac distribution) for any value of the con-
trol parameter, contrary to the usual Keller-Segel model
where blow up occurs above a critical mass when there is
no steady state (in d ≥ 2). In addition, we consider the
limit of high degradation of the chemical. In that limit,
the interaction between cells due to chemotaxis becomes
short-ranged. We show that, for sufficiently small (effec-
tive) temperatures T < Tc, the system undergoes a second
order phase transition from a homogeneous phase to an in-
homogeneous phase. The bacteria organize in two domains
with uniform density ρ± separated by a thin interface. The
resulting structure is similar to a “domain wall” in phase
ordering kinetics [17]. We study in detail the structure of
the interface (profile, width, surface tension,...) and deter-
mine the conditions for the bifurcation between a circular
shape (spot) and a rectangular shape (stripe) in a square
domain. This study can be performed analytically in the
limit of high degradation (our study is also exact in d = 1).
The more physical case of a finite degradation rate will be
treated numerically in another work.

In previous papers [5,15,18–22], we have found a num-
ber of analogies between the chemotactic problem and
other systems of physical interest: self-gravitating systems,
2D vortices, Bose-Einstein condensation, Burgers dynam-
ics, Cahn-Hilliard equations, generalized thermodynam-
ics... As mentioned previously, the simplified Keller-Segel
model [4] is isomorphic to the Smoluchowski-Poisson sys-
tem describing self-gravitating Brownian particles [6]. In
this analogy, the concentration of the chemical produced
by the bacteria plays a role similar to the gravitational po-
tential in astrophysical systems (they are both solutions
of a Poisson equation) so that a number of analogies be-
tween biology and gravity can be developped [5]. In ad-
dition, the collapse of bacterial populations for M > Mc

or the collapse of self-gravitating Brownian particles for
T < Tc is by many respects similar to the Bose-Einstein
condensation in phase space [19]. Finally, there exists some
analogies between the chemotactic aggregation of bacte-
ria and the formation of large-scale vortices in 2D tur-
bulence [18,5]. In that case, the concentration of bacte-
ria plays the role of the vorticity and the concentration
of the chemical produced by the bacteria plays the role
of the streamfunction. In two-dimensional hydrodynam-
ics, the vorticity field which is solution of the 2D Euler
equation can achieve a statistical equilibrium state (on
the coarse-grained scale) as a result of turbulent mixing
(violent relaxation) [21]. In the two-levels approximation,
the equilibrium vorticity profile is given by a Fermi-Dirac-

like distribution [23–26]. Interestingly, this is similar to the
steady state of the regularized Keller-Segel model intro-
duced in this paper. Furthermore, in the quasi-geostrophic
(QG) approximation relevant to geophysical flows [27], the
finite value of the Rossby deformation radius introduces
a shielding of the interaction between vortices which is
formally similar to the degradation of the chemical in the
chemotactic problem. In particular, the degradation factor
k (the square root of the ratio between the chemical decay
coefficient and the chemical diffusion coefficient) plays the
same role as the inverse of the deformation radius R−1

in geophysics. They control the distance over which the
interaction is efficient. In the context of jovian vortices,
Sommeria et al. [28] and Bouchet and Sommeria [29] have
considered the limit of a small deformation radius R → 0
to account for the annular jet structure of Jupiter’s great
red spot. As we shall see, this is similar to considering
a limit of high degradation in the chemotactic problem.
Therefore, many interesting results can be obtained by
developing the analogies between these different topics.

The paper is organized as follows. In Section 2, we in-
troduce a regularized Keller-Segel model of chemotactic
aggregation. We first provide a phenomenological deriva-
tion of this model followed by a more kinetic approach. In
Section 3, we study the equilibrium states of this model
in a limit of high degradation. For T < Tc, we show that
the solutions are formed by two phases in contact sepa-
rated by an interface (the stability of the uniform phase
is considered in Appendix A). In Sections 3.1–3.3, we de-
velop a “domain wall” theory to study the properties of
the interface and determine its main characteristics (pro-
file, width, surface tension,...). Asymptotic behaviours of
these expressions are obtained for T → Tc and T → 0
in Sections 3.4 and 3.5. Analytical approximations of the
wall profile are given in Sections 3.6 and 3.7 in the form
of self-similar solutions. Other approximations are given
in Section 3.8 using match asymptotics. In Section 3.9,
we show that the curvature radius is constant so that,
in two dimensions, the interface is either a line (stripe)
or a circle (spot). These results can be obtained equiva-
lently by minimizing the free energy functional associated
with the regularized Keller-Segel model (see Sect. 3.10).
In Section 3.11, we determine the phase diagram of the
system and the range of control parameters (B, T ) where
the equilibrium state is a stripe or a spot (the parame-
ter B is related to the total mass of the configuration).
In Section 4, we develop the close analogy between our
biological system and the jet structure of Jupiter’s great
red spot and other jovian vortices. Finally, in Section 5 we
discuss the connection of our study with other works.

2 The regularized Keller-Segel model

2.1 The dynamical equations

The general Keller-Segel model [3] describing the chemo-
taxis of bacterial populations consists in two coupled
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differential equations

∂ρ

∂t
= ∇ · (D2∇ρ) −∇ · (D1∇c), (1)

ε
∂c

∂t
= −k(c)c+ f(c)ρ+Dc∆c, (2)

that govern the evolution of the density of bacteria ρ(r, t)
and the evolution of the secreted chemical c(r, t). The bac-
teria diffuse with a diffusion coefficient D2 and they also
move in a direction of a positive gradient of the chemi-
cal (chemotactic drift). The coefficient D1 is a measure of
the strength of the influence of the chemical gradient on
the flow of bacteria. On the other hand, the chemical is
produced by the bacteria with a rate f(c) and is degraded
with a rate k(c). It also diffuses with a diffusion coefficient
Dc. In the general Keller-Segel model, D1 = D1(ρ, c) and
D2 = D2(ρ, c) can both depend on the concentration of
the bacteria and of the chemical. This takes into account
microscopic constraints, like close-packing effects, that can
hinder the movement of bacteria.

A very much studied version of the Keller-Segel model
is provided by the system of equations

∂ρ

∂t
= ∇ · (D∇ρ− χρ∇c), (3)

ε
∂c

∂t
= D′∆c+ aρ− bc, (4)

where the parameters are positive constants. Equation (3)
can be viewed as a mean-field Fokker-Planck equation as-
sociated with a Langevin dynamics of the form

dr
dt

= χ∇c+
√

2DR(t), (5)

where R(t) is a white noise and χ plays the role of a mo-
bility. The Langevin equation describes a point organism
performing a random walk biased in the direction of a drift
velocity proportional to the local chemical gradient. This
description is appropriate for an organism which measures
the spatial gradient accross its body such as the amoeba
Dictyostelium discoideum. By contrast, most bacteria em-
ploy a more complex temporal-sensing mechanism that
needs to be modelled adequately. However, on a coarse
scale, the Langevin dynamics can serve as a simple effec-
tive dynamics for the motion of individuals.

The stationary solution of equation (3) is given by

ρ = Ae
χ
D c. (6)

This is similar to the Boltzmann distribution for a system
in a potential −c. This suggests to introducing an effective
temperature through the relation Teff = D/χ which is
similar to the Einstein relation. For ε = 0, the system (3–
4) monotonically decreases the Lyapunov functional

F = −1
2

∫
ρc dr +

D

χ

∫
ρ ln ρ dr, (7)

which is similar to a free energy F = E−Teff S where E =
− 1

2

∫
ρcdr is the energy of interaction and S = − ∫

ρ ln ρdr

is the Boltzmann entropic functional1. One has Ḟ ≤ 0
which is similar to the proper version of the H-theorem in
the canonical ensemble [30,31]. For ε �= 0, the Lyapunov
functional is [32]:

F =
1
2a

∫ [
D′(∇c)2 + bc2

]
dr −

∫
ρc dr +

D

χ

∫
ρ ln ρ dr.

(8)

We shall consider here a more general situation where the
mobility and the diffusion coefficient in the Keller-Segel
model can depend on the density of bacteria. In that case,
equation (3) is replaced by

∂ρ

∂t
= ∇ · [∇(D(ρ)ρ) − χ(ρ)ρ∇c]. (9)

This can be viewed as a nonlinear mean-field Fokker-
Planck equation [18]. It is associated with a Langevin
equation of the form

dr
dt

= χ(ρ)∇c+
√

2D(ρ)R(t). (10)

We define the functions h and g by

Dh(ρ) =
d

dρ
(ρD(ρ)), (11)

χg(ρ) = ρχ(ρ), (12)

where D and χ are positive coefficients. With these nota-
tions, equation (9) can be rewritten

∂ρ

∂t
= ∇ · [Dh(ρ)∇ρ− χg(ρ)∇c]. (13)

Setting β = 1/Teff = χ/D, we obtain

∂ρ

∂t
= ∇ · [D (h(ρ)∇ρ− βg(ρ)∇c)]. (14)

This type of nonlinear mean-field Fokker-Planck equations
has been discussed in [18,33–35]. They are associated with
generalized entropic functionals of the form

S = −
∫
C(ρ) dr, (15)

where C(ρ) is a convex function defined by

C′′(ρ) =
h(ρ)
g(ρ)

. (16)

The Lyapunov functional associated to equation (14) is
the free energy equation (7) or equation (8) where the
Boltzmann entropy is replaced by the generalized en-
tropy (15). On the other hand, the steady states of equa-
tion (14) are given by

C′(ρ) = βc− α. (17)
1 Note that these analogies with thermodynamics take even

more sense if we remark that the simplified Keller-Segel model
with ε = b = 0 is isomorphic to the Smoluchowski-Poisson
system for self-gravitating Brownian particles [5].
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Since C is convex, this equation can be reversed to give
ρ = F (−βc+α) where F (x) = (C′)−1(−x) is a decreasing
function.

The Keller-Segel model (3–4) is known to exhibit blow-
up solutions when the chemotactic attraction prevails over
diffusion [11,16]. This reproduces the chemotactic aggre-
gation of bacterial populations. In theory, the density can
take arbitrarily large values and ultimately form a Dirac
peak. In reality, this singular evolution is unphysical as we
expect finite size effects and close-packing effects to be-
come important when the system aggregates and becomes
dense enough. We shall regularize the problem by intro-
ducing a sort of filling factor in the drift-diffusion equa-
tion (3). Thus, we take h(ρ) = 1 and g(ρ) = ρ(1 − ρ/σ0)
in equation (14) so that equation (3) is replaced by

∂ρ

∂t
= ∇ · [D (∇ρ− βρ(1 − ρ/σ0)∇c)] . (18)

With this modification, the mobility is reduced when the
density becomes high (i.e. when ρ approaches the value
σ0) and this prevents singularities to form. Indeed, it
can be shown that the density remains always bounded:
ρ(r, t) ≤ σ0 for all t. This bound is similar to the Pauli ex-
clusion principle in quantum mechanics, but it occurs here
in physical space. The regularized drift-diffusion equa-
tion (18) was introduced phenomenologically in [5,18] to
avoid infinite values of the density.

In the following, we shall take ε = 0 for simplicity. This
is valid in a limit of high diffusivity of the chemical [4,32].
Of course, the results that are valid at equilibrium are in-
dependent on this assumption. If we introduce the nota-
tions k2 = b/D′ and λ = a/D′, we obtain the regularized
Keller-Segel model

∂ρ

∂t
= ∇ · [D (∇ρ− βρ(1 − ρ/σ0)∇c)] , (19)

∆c− k2c = −λρ. (20)

The distance over which chemotaxis is effective is con-
trolled by the quantity k−1 which is equal to the square
root of the ratio between the chemical diffusion coefficient
D′ and the chemical decay b. For k → 0, we obtain a Pois-
son equation modelling a system with a long-range inter-
action. For finite values of k, the interaction is shielded
on a typical distance k−1. For k → +∞, the interaction
between cells due to chemotaxis becomes short-ranged.

The stationary solution of equation (19) is given by

ρ =
σ0

1 + e−βc+α
, (21)

which is similar to the Fermi-Dirac distribution in physical
space. From this expression, we clearly have ρ(r) ≤ σ0 at
equilibrium. Furthermore, the Lyapunov functional can be
written in the form of a free energy F = E − Teff S where

E = −1
2

∫
ρc dr = − 1

2λ

∫ [
(∇c)2 + k2c2

]
dr, (22)

is the energy of interaction and

S = −σ0

∫ {
ρ

σ0
ln

ρ

σ0
+

(
1 − ρ

σ0

)
ln

(
1 − ρ

σ0

)}
dr,

(23)
is the Fermi-Dirac entropic functional in physical space.
The distribution (21) extremizes the free energy at fixed
mass. Indeed, writing the first order variations in the form
δF + αTeff δM = 0 where α is a Lagrange multiplier, we
recover equation (21). Furthermore, it can be shown that
a stationary solution of equations (19, 20) is linearly stable
if, and only if, it is a minimum of F at fixed mass [18].
These properties remain valid for the more general Fokker-
Planck equations (14).

2.2 Phenomenological derivation of the model

In this section, we develop a connection between the
chemotactic problem and thermodynamics. To that pur-
pose, we introduce the entropic functional (23) from a
combinatorial analysis which respects an exclusion prin-
ciple in physical space. Then, we obtain the dynamical
equation (19) from arguments similar to the linear ther-
modynamics of Onsager.

We divide the domain into a very large number of mi-
crocells with size h. We assume that the size h is of the
order of the size of a particle so that a microcell is oc-
cupied either by 0 or 1 particle. This is how the exclu-
sion principle is introduced in the problem. We shall now
group these microcells into macrocells each of which con-
tains many microcells but remains nevertheless small com-
pared to the spatial extension of the whole system. We call
ν the number of microcells in a macrocell. Consider the
configuration {ni} where there are n1 particles in the 1st
macrocell, n2 in the 2nd macrocell etc., each occupying
one of the ν microcells with no cohabitation. The number
of ways of assigning a microcell to the first element of a
macrocell is ν, to the second ν − 1 etc. Assuming that
the particles are indistinguishable, the number of ways of
assigning microcells to all ni particles in a macrocell is
thus

1
ni!

× ν!
(ν − ni)!

. (24)

To obtain the number of microstates corresponding to the
macrostate {ni} defined by the number of particles ni in
each macrocell (irrespective of their precise position in the
cell), we need to take the product of terms such as (24)
over all macrocells. Thus, the number of microstates cor-
responding to the macrostate {ni}, which is proportional
to the a priori probability of the state {ni}, is

W ({ni}) =
∏

i

ν!
ni!(ν − ni)!

. (25)

This is the Fermi-Dirac statistics which is applied here in
physical space. As is customary, we define the entropy of
the state {ni} by

S({ni}) = lnW ({ni}). (26)
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It is convenient here to return to a representation in terms
of the density in the ith macrocell

ρi = ρ(ri) =
ni m

νhd
=
niσ0

ν
, (27)

where we have defined σ0 = m/hd, which represents the
maximum value of ρ due to the exclusion constraint. Now,
using the Stirling formula, we have

lnW ({ni}) 	
∑

i

ν(ln ν − 1) − ν

{
ρi

σ0

[
ln

(
νρi

σ0

)
− 1

]

+
(

1 − ρi

σ0

)[
ln

{
ν

(
1 − ρi

σ0

)}
− 1

]}
. (28)

Passing to the continuum limit ν → 0, we obtain the ex-
pression (23) of the Fermi-Dirac entropy in physical space.
In the dilute limit ρ 
 σ0, it reduces to the Boltzmann
entropy appearing in equation (7).

The entropy is the correct thermodynamical potential
for an isolated system for which the energy is conserved
(microcanonical ensemble). This is not the case for our
system which is dissipative. The proper description is the
canonical ensemble and the correct thermodynamical po-
tential is the free energy F = E − Teff S constructed with
the Fermi-Dirac entropy (23) and the energy (22). The
equilibrium state in the canonical ensemble is obtained by
minimizing the free energy at fixed mass. Writing the first
variations as δF − λδM = 0, we obtain

δF

δρ
− λ = 0, (29)

which leads to the Fermi-Dirac distribution (21) with
α = −λβ. Now that the proper thermodynamical poten-
tial has been derived by a combinatorial analysis, we can
introduce phenomenologically a dynamical model by writ-
ing the evolution of the density as a continuity equation
∂tρ = ∇ · J where the current is the gradient of the func-
tional derivative of the free energy, i.e.

∂ρ

∂t
= ∇ ·

(
µ∇δF

δρ

)
. (30)

This formulation ensures that the free energy decreases
monotonically provided that µ ≥ 0. Indeed,

Ḟ =
∫
δF

δρ

∂ρ

∂t
dr =

∫
δF

δρ
∇ · J dr

= −
∫

J · ∇δF

δρ
dr = −

∫
µ

(
∇δF

δρ

)2

dr ≤ 0. (31)

Furthermore, a steady state satisfies Ḟ = 0, i.e
∇(δF/δρ) = 0 leading to equation (29). Now, using equa-
tions (22) and (23), we have

∇δF

δρ
= −∇c+

D

χ

∇ρ
ρ(1 − ρ/σ0)

. (32)

To avoid the singularity when ρ = 0 or ρ = σ0, we require
that µ is proportional to ρ(1−ρ/σ0). Writing equation (30)
in the form

∂ρ

∂t
= ∇ ·

[
χρ(1 − ρ/σ0)∇δF

δρ

]
, (33)

and using equation (32), we obtain equation (18). This
approach to construct relaxation equations is equivalent
to Onsager’s linear thermodynamics. Indeed, noting that
the potential

λ(r, t) ≡ δF

δρ
= −c+ Teff ln

(
ρ/σ0

1 − ρ/σ0

)
, (34)

is uniform at equilibrium according to equation (21) or
(29), the linear thermodynamics of Onsager suggests to
writing the current as

J = µ∇λ(r, t), (35)

which is equivalent to equation (30). The same results
can be obtained by a variational formulation which is
related to the Maximum Entropy Production Principle
(MEPP) [18]. The rate of dissipation of free energy is given
by

Ḟ =
∫
δF

δρ

∂ρ

∂t
dr =

∫
δF

δρ
∇ · J dr = −

∫
J · ∇δF

δρ
dr.

(36)

We shall determine the optimal current J∗ which maxi-
mizes the rate of dissipation of free energy Ḟ under the
constraint J2 ≤ C(r, t) putting a (physical) bound on |J|.
The corresponding variational problem can be written

δḞ + δ

∫
J2

2µ
dr = 0, (37)

where µ is a Lagrange multiplier. Performing the vari-
ations on J, we obtain J∗ = µ∇(δF/δρ) which returns
equation (30).

2.3 Kinetic derivation of the model

As discussed previously, equation (14) can be viewed as
a nonlinear Fokker-Planck equation where the diffusion
coefficient and the mobility explicitly depend on the local
concentration of particles. Such generalized Fokker-Planck
equations can be derived from a kinetic theory, starting
from the master equation, and assuming that the proba-
bilities of transition explicitly depend on the occupation
number (concentration) of the initial and arrival states.
Below, we briefly summarize and adapt to the present sit-
uation the approach developed by Kaniadakis [36] in a
more general context.

We introduce a stochastic dynamics by defining the
probability of transition of a bacteria from position r to
position r′. Following Kaniadakis [36], we assume the fol-
lowing form

π(r → r′) = w(r, r − r′)a[ρ(r, t)]b[ρ(r′, t)]. (38)
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Usual stochastic processes correspond to a(ρ) = ρ and
b(ρ) = 1: the probability of transition is proportional to
the density of the initial state and independent on the
density of the final state. They lead to the Fokker-Planck
equation (3) as will be shown below. Here, we assume a
more general dependence on the occupancy in the initial
and arrival states. This can account for microscopic con-
straints like close-packing effects that can inhibitate the
transition. Quite generally, the evolution of the density
satisfies the master equation

∂ρ

∂t
=

∫
[π(r′ → r) − π(r → r′)] dr′. (39)

Assuming that the evolution is sufficiently slow, and local,
such that the dynamics only permits values of r′ close to
r, one can develop the term in brackets in equation (39)
in powers of r − r′. Proceeding along the lines of [36], we
obtain a Fokker-Planck-like equation

∂ρ

∂t
=

∂

∂xi

[(
ζi +

∂ζij
∂xj

)
γ(ρ) + γ(ρ)

∂ lnκ(ρ)
∂ρ

ζij
∂ρ

∂xj

]
,

(40)
with

γ(ρ) = a(ρ)b(ρ), κ(ρ) =
a(ρ)
b(ρ)

, (41)

and

ζi(r) = −
∫
yiw(r,y)dy, (42)

ζij(r) =
1
2

∫
yiyjw(r,y)dy. (43)

The moments ζi and ζij are fixed by the Langevin equa-
tion (5). Assuming isotropy

ζi = Ji, ζij = Dδij , (44)

the kinetic equation becomes

∂ρ

∂t
= ∇ ·

[
(J + ∇D)γ(ρ) + γ(ρ)

∂ lnκ(ρ)
∂ρ

D∇ρ
]
. (45)

Now, according to the Langevin equation (5), D is inde-
pendent on r and J = −χ∇c. Thus, we get

∂ρ

∂t
= ∇ ·

[
Dγ(ρ)

∂ lnκ(ρ)
∂ρ

∇ρ− χγ(ρ)∇c
]
. (46)

If we define

h(ρ) = γ(ρ)
∂ lnκ(ρ)
∂ρ

, g(ρ) = γ(ρ), (47)

the foregoing equation can be written

∂ρ

∂t
= ∇ · [Dh(ρ)∇ρ− χg(ρ)∇c], (48)

and it coincides with the phenomenological equation (13).
It seems natural to assume that the transition probability

is proportional to the density of the initial state so that
a(ρ) = ρ. In that case, we obtain an equation of the form

∂ρ

∂t
= ∇ · (D [b(ρ) − ρb′(ρ)]∇ρ− χρb(ρ)∇c). (49)

Note that the coefficients of diffusion and mobility are
not independent since they are both expressed in terms
of b(ρ). Choosing b(ρ) = 1, i.e. a probability of transition
which does not depend on the population of the arrival
state, leads to the standard Fokker-Planck equation (3). If,
now, we assume that the transition probability is blocked
(inhibited) if the concentration of the arrival state is equal
to σ0, then it seems natural to take b(ρ) = 1 − ρ/σ0. In
that case, we obtain

∂ρ

∂t
= ∇ · (D∇ρ− χρ(1 − ρ/σ0)∇c), (50)

which coincides with the phenomenological equation (18).
We can consider a related kinetic model with simi-

lar thermodynamical properties and the same equilibrium
states. For this model, the dynamical equation reads

∂ρ

∂t
= ∇ ·

[
χ

(
Teff

1 − ρ/σ0
∇ρ− ρ∇c

)]
. (51)

This can be put in the form of a generalized Smoluchowski
equation [18]:

∂ρ

∂t
= ∇ ·

[
1
ξ

(∇p− ρ∇c)
]
, (52)

associated with a barotropic equation of state p(ρ) =
−σ0Teff ln(1 − ρ/σ0), where p is an effective “pressure”.
For ρ
 σ0, we recover the “isothermal” equation of state
p = ρTeff leading to the ordinary Keller-Segel model (3).
However, for higher densities, the equation of state is mod-
ified. In particular, it prevents the density from exceeding
the maximum value σ0.

Equations (50) and (51) have very similar proper-
ties and they can be viewed as natural extensions of the
Keller-Segel model. In equation (50) the regularization is
put in the drift term (mobility) while in equation (51)
it is put in the diffusion term (pressure). These two pos-
sibilities are considered in [18]. Note finally that equa-
tion (51) can be obtained from the master equation (39)
when the transition probabilities are of the form (38) with
a(ρ) = ρ/

√
1 − ρ/σ0 and b(ρ) =

√
1 − ρ/σ0.

3 Domain wall theory

3.1 The stationary state

The stationary solution of the regularized Keller-Segel
model (19) is the Fermi-Dirac-like distribution

ρ =
σ0

1 + e−βc+α
. (53)
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It relates, at equilibrium, the bacterial density ρ to the
concentration of the chemical c. The chemical is itself pro-
duced by the bacteria according to equation (20). Thus,
combining equations (53) and (20), we obtain a differential
equation for the concentration c. Using the identity

1
1 + ex

=
1
2

[
1 − tanh

(x
2

)]
, (54)

this mean-field equation can be written

∆c− k2c = −λσ0

2

[
1 − tanh

(
α− βc

2

)]
. (55)

Introducing the new variables

ψ =
c

(λσ0/2)
, µ =

α

2
, C =

βλσ0

4k2
, (56)

we get

∆ψ − k2ψ = −1 + tanh
[
C

( µ
C

− k2ψ
)]
. (57)

In general, this equation must be solved numerically and
different structures can be obtained depending on the val-
ues of the parameters. In order to gain some insight into
the problem, we shall solve this equation perturbatively
in a limit of high degradation of the chemical so that
k � 1. In this limit of high decay, the communication
distance between cells becomes very small. This limit is
somewhat unrealistic for biological purposes since this pre-
vents cells from efficiently communicating via chemotactic
signals which is the aim of the whole process. However,
this limit allows to obtain analytical results that may be
representative of more physical regimes with finite degra-
dation rate. Note also that the following treatment is ex-
act in 1D without approximation. In the limit k → +∞,
we can neglect the gradient of concentration except in a
thin layer of width ∼k−1 (domain wall) where the concen-
tration changes rapidly. Outside the wall, we obtain the
algebraic equation

−k2ψ = −1 + tanh
[
C

( µ
C

− k2ψ
)]
. (58)

In some range of parameters (see below), this equation de-
termines two solutions ψ± which correspond to two phases
with uniform concentration. These two phases are con-
nected by a “wall”. For k � 1, the interface is very thin
so that we can neglect the curvature of the wall in a first
approximation. The wall profile is then determined by the
one-dimensional differential equation

d2ψ

dξ2
− k2ψ = −1 + tanh

[
C

( µ
C

− k2ψ
)]
, (59)

where ξ is a coordinate normal to the interface.

3.2 The wall equation

If we set

φ = k2ψ − µ/C, τ = kξ, χ =
µ

C
− 1, (60)

we obtain the wall equation

d2φ

dτ2
= − tanh(Cφ) + φ+ χ. (61)

Equation (61) is similar to the equation of motion for a
particle in a potential

U(φ) = T ln [cosh(φ/T )] − φ2

2
+ χφ+ U0, (62)

where τ plays the role of time and φ plays the role of
position. Indeed, it can be rewritten

d2φ

dτ2
= −U ′(φ). (63)

We have introduced the notation C = 1/T where, as we
shall see, T plays the role of a temperature (it is further-
more proportional to the effective temperature Teff de-
fined previously). On the other hand, U0 is a constant of
integration that will be specified later.

Far from the wall, the density is uniform with values
φ± satisfying

U ′(φ±) = 0. (64)

On the other hand, a conserved quantity of equation (63)
is

E =
1
2

(
dφ

dτ

)2

+ U(φ). (65)

The condition of solvability is therefore

U(φ−) = U(φ+). (66)

The only possibility to satisfy the two conditions (64–66)
simultaneously is that χ = 0, i.e µ = 1/T (in that case,
U(φ) is symmetric and the above conditions are satisfied
trivially). Then, the wall profile is completely determined
by the equations

d2φ

dτ2
= − tanh(φ/T ) + φ, (67)

U(φ) = T ln [cosh(φ/T )] − φ2

2
+ U0, (68)

φ± = ±u, u = tanh(u/T ). (69)

We note that the algebraic equation (69), equivalent to
equation (64), has solutions u �= 0 only if (see Fig. 1)

T < Tc = 1. (70)

This is similar to a second order phase transition (see
Fig. 2). In that case, the algebraic equation has three so-
lutions 0 and ±u with u ≤ 1 (but the solution φ = u = 0
is unstable). The concentrations of bacteria and chemical
in the uniform domains are related to the order parame-
ter u by

c± =
λσ0

2k2
(1 ± u), ρ± =

σ0

2
(1 ± u). (71)
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Fig. 1. Graphical construction determining the solutions ±u of
the algebraic equation (69)-b as a function of the temperature
T .
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Fig. 2. Evolution of the order parameter u as a function of the
temperature T . For T > Tc the system is homogeneous with
φ = u = 0. For T < Tc, the uniform solution becomes unstable
(see Appendix A) and two phases φ± = ±u separated by a
“domain wall” appear.

More generally, using equations (53–54) the concentration
profiles in the whole space can be expressed in terms of
the field φ by

c =
λσ0

2k2
(1 + φ), ρ =

σ0

2
[1 + tanh(φ/T )]. (72)

3.3 The wall profile

We determine U0 such that U(u) = 0. The potential is
then explicitly given by (see Fig. 3):

U(φ) = T ln
[
cosh

(
φ

T

)]
− φ2

2
− T ln

[
cosh

( u
T

)]
+
u2

2
.

(73)
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Fig. 3. The potential U(φ) of the equivalent mechanical prob-
lem for different values of the temperature.

−10 −5 0 5 10
τ

−1

−0.5

0

0.5

1

φ

+u

−u

T=0.7

Fig. 4. Plot of the field φ accross the wall for T = 0.7. The
solid line corresponds to the exact solution of equation (74)
obtained numerically and the dashed line corresponds to the
approximate expression (101).

With this convention, the constant appearing in equa-
tion (65) is E = 0. Then, we obtain the equation

1
2

(
dφ

dτ

)2

= −U(φ), (74)

which determines the wall profile by a simple integration
(see Fig. 4)

∫ φ

0

dx√−2U(x)
= τ. (75)

For τ → +∞, φ → u. To get the asymptotic behaviour,
we set φ = u − θ with θ 
 1 and we linearize the wall
equation (74). This yields

dθ

dτ
= −

√
−U ′′(u)θ, (76)
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Fig. 5. Plot of the concentration gradient v(τ ) accross the
wall for T = 0.7. The solid line corresponds to the exact solu-
tion of equation (74) obtained numerically and the dashed line
corresponds to the approximate expression (104–106).
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Fig. 6. Evolution of the typical width of the wall as a func-
tion of the temperature. The dashed lines correspond to the
asymptotic expressions for T → 0 and T → Tc.

with U ′′(u) = 1
T (1 − u2) − 1 < 0 for T < Tc. The wall

connects the uniform phase exponentially rapidly. Thus,
we can write

φ = u−A(u)e−2τ/L(u), (τ → +∞) (77)

where the typical width of the wall (expressed in units of
k−1) is

L(u) =
2√−U ′′(u)

=
2√

1 − 1
T (1 − u2)

. (78)

We introduce the concentration gradient (see Fig. 5)

v(τ) =
dφ

dτ
=

√
−2U(φ). (79)
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v m
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Fig. 7. Evolution of the maximum concentration gradient as
a function of the temperature. The dashed lines correspond to
the asymptotic expressions for T → 0 and T → Tc.

Using equation (73), we find that the maximum value of
the concentration gradient, corresponding to φ = 0, is
given by

vmax(u) =
√

2T ln
[
cosh

( u
T

)]
− u2. (80)

Finally, the energy of the wall, or surface tension, is

σ(u) =
∫ +∞

−∞

(
dφ

dτ

)2

dτ =
∫ +u

−u

√
−2U(φ)dφ. (81)

The functions L, vmax and σ are plotted in Figures 6–8
as a function of the temperature T , together with their
asymptotic expressions computed in the following sec-
tions. The concentration profiles of bacteria and of the
secreted chemical, given by equation (72), are plotted in
Figure 9.

3.4 The limit T → Tc

For T → Tc, u → 0 and φ 
 1. In that case, we can
expand the potential to order φ4 to obtain

U(φ) =
1
2
(1 − T )φ2 − 1

12
φ4 + U0. (82)

The wall equation becomes

d2φ

dτ2
= −(1 − T )φ+

1
3
φ3. (83)

The uniform solutions are φ = 0 and φ2 = 3(1−T ) yielding

u =
√

3(1 − T ). (84)

We can now re-express the potential in the form

U(φ) = − 1
12

(φ2 − u2)2. (85)
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Fig. 8. Evolution of the energy of the wall (surface tension)
as a function of the temperature. The dashed lines correspond
to the asymptotic expressions for T → 0 and T → Tc.
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Fig. 9. Concentration profiles of bacteria ρ (in units of σ0) and
of the secreted chemical c (in units of λσ0/2k2) for T = 0.7.

The wall profile (75) is given by

∫
dφ

u2 − φ2
=

τ√
6
, (86)

yielding explicitly

φ = u tanh
(
uτ√

6

)
. (87)

The typical width of the wall, as defined by equa-
tion (78), is

L =
√

6
u

=
√

2(1 − T )−1/2. (88)

The width of the wall diverges at the critical point with
the exponent −1/2. The wall profile can be rewritten

φ = u(T ) tanh
[

τ

L(T )

]
, (89)

and the concentration gradient is

v(τ) =
u(T )
L(T )

cosh−2

[
τ

L(T )

]
. (90)

The maximum value of the concentration gradient is given
by

vmax =
u2

√
6

=
(

3
2

)1/2

(1 − T ), (91)

and it tends to zero with the exponent +1 at the critical
temperature. Finally, the surface tension is given by

σ =
(

2
3

)3/2

u3 = [2(1 − T )]3/2, (92)

and it vanishes at the critical point with the exponent
+3/2. These are the same scalings as in the classical Cahn-
Hilliard theory [37].

3.5 The limit T → 0

Setting x = u/T , equation (69)-b can be rewritten Tx =
tanh(x). For T → 0, x ∼ 1/T → +∞ and u → 1. More
precisely, considering the behaviour of tanh(x) for x →
+∞, we get

u 	 1 − 2e−2/T . (93)

The potential can be rewritten (for φ ≥ 0)

U(φ) = φ+ Te−2φ/T − φ2

2
+ U0. (94)

The typical width of the wall is

L = 2
(

1 +
2
T
e−2/T

)
= 2 − (1 − u) ln

(
1 − u

2

)
, (95)

and the maximum value of the concentration gradient is

vmax = 1 − (ln 2)T = 1 − 2 ln 2
ln

(
1−u

2

) . (96)

Finally, the surface tension is given by (see Appendix B)

σ = 1 − π2

12
T 2 = 1 − π2

6 ln
(

1−u
2

) . (97)

For T = 0, we have u = 1 and

U(φ) = φ− φ2

2
− 1

2
= −1

2
(φ− 1)2. (98)

The wall profile is solution of

dφ

dτ
= 1 − φ, (99)

leading to

φ = 1 − e−τ (τ ≥ 0). (100)
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3.6 Simple approximation for T > 1/2

If we are relatively close to the critical temperature Tc = 1,
we can propose a simple approximation of the wall profile
in the form

φ = u(T ) tanh
[

τ

L(T )

]
, (101)

where u and L are given by the exact expressions

u = tanh
( u
T

)
, (102)

L =
2√

1 − 1
T (1 − u2)

. (103)

This Ansatz becomes exact when T → Tc and it provides
a fair approximation for smaller temperatures (typically
T > 1/2), see Figure 4.

The concentration gradient obtained from equa-
tion (101) is given by

v(τ) =
vmax(T )

cosh2(τ/L(T ))
, (104)

with the maximum value

vmax =
u

L
=
u

2

√
1 − 1

T
(1 − u2). (105)

However, it is more relevant to take for vmax the exact
value (80), i.e.

vmax =
√

2T ln
[
cosh

( u
T

)]
− u2. (106)

Typically, equation (104) with (105) gives a better agree-
ment with the exact solution in the tail of profile while
equation (104) with (105) gives a better agreement in the
core of the profile, see Figure 5. Finally, the surface tension
calculated with equation (104) is given by σ = 4/3v2

maxL.

3.7 Simple approximation for T < 1/2

For sufficiently small temperatures, we can propose a sim-
ple approximation of the wall profile in the form

φ = u(T )
[
1 − e−2τ/L(u)

]
(τ ≥ 0), (107)

where u and L are given by the exact expressions (102)
and (103). For T = 0, this Ansatz returns equation (100)
and it provides a fair approximation of the exact profile for
T < 1/2 (typically). The concentration gradient obtained
from equation (107) is

v(τ) = vmax(T )e−2|τ |/L(T ), (108)

with the maximum value vmax = 2u/L. As before, it may
be more relevant to use the exact value (106). The sur-
face tension calculated with equation (108) is given by
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φ/
u

tanh(x)

1−exp(−2x)

Fig. 10. Scaled concentration φ/u(T ) as a function of the
scaled distance τ/L(T ) for different values of the temperature
between T = 0 and T = Tc = 1. In terms of the scaled vari-
ables, the exact concentration profile is bounded by the solu-
tions 1 − exp(−2x) for T = 0 and tanh(x) for T = Tc.
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Fig. 11. Scaled concentration gradient v/vmax(T ) as a func-
tion of the scaled distance τ/L(T ) for different values of the
temperature between T = 0 and T = Tc = 1. In terms of the
scaled variables, the exact profile of concentration gradient is
bounded by the solutions exp(−2x) for T = 0 and 1/ cosh2(x)
for T = Tc.

σ = 1
2v

2
maxL but this approximation yields an asymptotic

behaviour for T → 0 different from the exact result (97).
The Ansatz (101) and (107) have a self-similar struc-

ture as a function of the temperature. Indeed, the func-
tions φ(τ)/u(T ) and v(τ)/vmax(T ) vs. τ/L(T ) have an
invariant profile. The exact solution of the differential
equation (67) has not an exact self-similar structure as
shown in Figures 10 and 11 but the region between the
envelopes is relatively thin so that equations (101–107)
can be useful approximations for T → 1 and T → 0 re-
spectively. The profiles of concentration and concentration
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Fig. 12. Concentration φ as a function of the distance τ for
different values of the temperature T = 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8 and 0.9.
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Fig. 13. Concentration gradient v as a function of the distance
τ for different values of the temperature T = 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8 and 0.9.

gradient (in non-scaled variables) are plotted in Figures 12
and 13.

3.8 Match asymptotics

For small values of the temperature, one can propose an-
other approximation of the profiles of concentration and
concentration gradient by using match asymptotics.

3.8.1 Concentration profile φ(τ)

The exact asymptotic behaviours of the concentration pro-
file are given by

φ(τ) 	 vmaxτ + ... (τ → 0), (109)

0 1 2 3 4 5
τ

0

0.2

0.4

0.6

0.8

1

φ

T=0.3

Fig. 14. Concentration profile for T = 0.3: exact (solid),
approximate self-similar (dotted), match asymptotics (long-
dashed).

φ(τ) = u−Ae−2τ/L (τ → +∞), (110)

where u, L and vmax are known functions of the temper-
ature. We match these two behaviours at a point x where
their values and the values of their first derivative coin-
cide. This yields

x vmax = u−Ae−2x/L, (111)

vmax =
2A
L
e−2x/L. (112)

From these relations, we obtain

x =
u

vmax
− L

2
, (113)

A =
L

2
vmaxe

2u
Lvmax

−1. (114)

For T → 0, we explicitly find that

x = (ln 2)T, (115)

A = 1 − (ln 2)2T 2. (116)

The exact concentration profile is plotted in Figure 14 for
T = 0.3, and compared with the approximate self-similar
expression (107) and the expression (109–110) obtained
by match asymptotics.

3.8.2 Concentration gradient v(τ)

The exact asymptotic behaviours of the concentration gra-
dient are given by

v(τ) 	 vmax

[
1 +

1
2

(
1 − 1

T

)
τ2 + ...

]
(τ → 0),

(117)

v(τ) = 2
A

L
e−2τ/L (τ → +∞). (118)
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Fig. 15. Concentration gradient for T = 0.3: exact (solid),
approximate self-similar (dotted), match asymptotics (long-
dashed).

We match these two behaviours at a point x where their
values and the values of their first derivative coincide. Af-
ter simplification, we obtain

x =
−L+

√
L2 + 8T

1−T

2
, (119)

A =
L2

4
vmax

(
1
T

− 1
)
xe2x/L. (120)

For T → 0, we explicitly find that

x = T, (121)

A = 1 + (1 − ln 2)T. (122)

The exact concentration gradient is plotted in Figure 15
for T = 0.3, and compared with the approximate self-
similar expression (108–106) and the expression (117–118)
obtained by match asymptotics.

3.9 The curvature radius

To next order in the expansion in k−1 
 1, we must ac-
count for the curvature of the interface. Close to the in-
terface, ∇ψ = dψ/dξn where n is a unit vector normal
to the wall. Introducing the curvature r−1 = ∇ · n (r is
the curvature radius), we get ∆ψ = d2ψ/dξ2 + r−1dψ/dξ.
Therefore, equation (57) becomes at first order

d2φ

dτ2
+

1
kr

dφ

dτ
= −U ′(φ) + χ1/k, (123)

where we have written χ = χ0 + k−1χ1 + ... and used the
fact that χ0 = 0 at leading order (see Sect. 3.2). Multi-
plying equation (123) by dφ/dτ and integrating across the

wall we obtain the relation

1
r

= −2χ1u

σ(u)
, (124)

which shows that the radius of curvature r is constant.
Therefore, the shape of the interface is either a circle (lead-
ing to a spot) or a straight line (leading to a stripe). Equa-
tion (124) is similar to Laplace’s law relating the curva-
ture radius of bubbles to the surface tension and to the
difference of pressure between the interface (played here
by 2u).

3.10 The free energy

The previous results can be recovered by minimizing the
‘free energy’ (22–23) at fixed mass. This has been dis-
cussed in detail by Bouchet and Sommeria [29] in the con-
text of jovian vortices where the problem is similar (see
Sect. 4). Therefore, their study can be directly applied to
the present situation and we shall only give the main steps
of the analysis.

To leading order in k−1 → 0, the system consists of
two phases with uniform density ρ±1 and size A±1 (we
call A = A+ + A− the total size of the domain). Setting
ρ = σ0/2(1 + φ) and c = λσ0/2k2(1 + φ), the free energy
F = E − TeffS + αTeffM where E and S are given by
equations (22–23) and M is the total mass can be written

F = A1f(ρ1) + (A−A1)f(ρ−1), (125)

with

f =
Teff σ0

2
[−Cφ2 + (α− 2C)φ

+ (1 + φ) ln(1 + φ) + (1 − φ) ln(1 − φ)]. (126)

The optimal values of ρ±1 and A±1 are obtained by mini-
mizing the free energy (125). The variations on ρ±1 imply

f ′(ρ±1) = 0, f ′′(ρ±1) > 0, (127)

so that ρ± is a minimum of free energy. The variations on
A1 imply that

f(ρ1) = f(ρ−1). (128)

This relation expresses the equality of the free energy of
the two phases. The only possibility to satisfy the rela-
tions (127–128) simultaneously is to have α = 2C so that
f(φ) is an odd function. This is equivalent to the solvabil-
ity condition (66) leading to χ ≡ α/2C − 1 = 0. Then,
it is straightforward to check that f ′(ρ) = 0 implies that
φ = ±u where u is given by

Cu =
1
2

ln
(

1 + u

1 − u

)
= tanh−1(u). (129)

This returns the relation (69)-b.
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To first order in k−1, we need to determine the contri-
bution of the free energy contained in the wall (interface).
The free energy per unit length is given by

FW =
1
k

∫ +∞

−∞
[h(ρ(τ)) − h(ρ±1)] dτ, (130)

where h(ρ) is the density of free energy. Using equa-
tions (22, 23, 72) and (74), we obtain after simplification

FW =
λσ2

0

4k3

∫ +∞

−∞

[
h̃(φ) − h̃(φ±1)

]
dτ, (131)

with

h̃(φ) = φ(tanh(Cφ) − φ). (132)

Using h̃(φ±1) = h̃(u) = 0 and tanh(Cφ) ≥ φ (see Fig. 1),
we find that FW > 0. Therefore, minimizing the free en-
ergy F ∼ lFW amounts to minimizing the length l of
the interface at fixed area. This gives either a circle or
a straight line and this returns the fact that the cur-
vature radius is constant (see Sect. 3.9). This argument
also shows that it is more profitable to form, at equi-
librium, a single “bubble” of size A± rather than sev-
eral “droplets” of smaller size. However, a configuration
with several “droplets” can exist as a non-equilibrium so-
lution of the regularized Keller-Segel model (19–20). These
droplets will evolve in time and merge together to finally
form a single “bubble” (spot or stripe). This is similar to
a coarsening process in spin systems [17] or to the aggre-
gation of vortices in 2D decaying turbulence [38].

3.11 Bifurcations: spots and stripes

We shall work in a square domain with total size A. We
consider periodic boundary conditions in order to avoid
boundary effects. The equilibrium state consists in two
phases with uniform density (ρ+, A+) and (ρ−, A−) with
A+ +A− = A. We introduce the parameter

B = 1 − 2M
σ0A

. (133)

Since 0 ≤ M ≤ σ0A, the parameter B takes values be-
tween −1 and +1. Writing M = A+ρ+ +A−ρ− and using
equation (71), the area of the two phases at equilibrium
are given by

A± =
A

2

(
1 ∓ B

u

)
. (134)

They are determined by the parameter B (fixed by the
total mass) and by the parameter u (fixed by the temper-
ature). Since 0 ≤ A± ≤ A, we have the inequalities

|B| ≤ u ≤ 1, −1 ≤ B ≤ 1. (135)

Since the curvature radius is constant, we have three pos-
sible configurations: (i) a circular domain (spot) of phase
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Fig. 16. Interfacial length of the spot (circle) as a function of
the temperature for different values of the parameter B (the
area of the domain has been normalized to A = 1). The spot is
selected if its length is smaller than 2 and the stripe is selected
in the other case. If B > Bc = (π − 2)/π, the spot is always
selected. If B < Bc, the stripe is selected for T < T0(B) and
the spot is selected for T > T0(B).

+ surrounded by phase −: the length of the interface is
2
√
πA+; (ii) a circular domain (spot) of phase − sur-

rounded by phase +: in that case, the length of the in-
terface is 2

√
π(A −A+); (iii) a stripe of phase ± and a

stripe of phase ∓: the length of the interface is 2
√
A. The

configuration selected at equilibrium is the one with the
smallest interfacial length (see Fig. 16).

(i) The spot of phase + surrounded by phase − will be
selected if A+ ≤ A/π, i.e. u ≤ πB/(π − 2). This is
possible only for B ≥ 0. In terms of the temperature,
this corresponds to T ≥ T0 where T0(B) is deter-
mined by u0 = tanh(u0/T0) with u0 = |B|π/(π − 2).

(ii) The circular domain of phase − surrounded by phase
+ will be selected if A+ ≥ (1 − 1/π)A, i.e. u ≤
−πB/(π−2). This is possible only for B ≤ 0. In terms
of the temperature, this corresponds to T ≥ T0.

(iii) The stripes will be selected for T < T0. This is pos-
sible only for |B| ≤ Bc ≡ (π − 2)/π (i.e. u0 ≤ 1). For
B > 0, the stripe + has the smallest area (A+ ≤ A−)
and this is the opposite for B < 0.

Finally, we note that the condition |B| ≤ u implies that
T ≤ Tmax(B) ≤ Tc where Tmax(B) is determined by |B| =
tanh(|B|/Tmax).

The phase diagram is represented in Figure 17. This
is the counterpart of the diagram obtained by Bouchet
and Sommeria [29] for jovian vortices. The ‘spots’ are the
equivalent of the ‘vortices’ and the ‘stripes’ are the equiva-
lent of the ‘jets’. The main difference (beyond the context
and the interpretation of the solutions) is that the con-
trol parameter in our case is the effective temperature T
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Fig. 17. Phase diagram of the regularized chemotactic model
(19–20) showing the bifurcation between ‘spots’ and ‘stripes’
as a function of the control parameters (B, T ). In a bounded
domain, the solutions exist only for T ≤ Tmax(B). We have
drown the line of transition T0(B) between the two structures.
Finally, the dashed line corresponds to the domain of validity of
our perturbative expansion; it has been plotted for Ak2 = 1000.

(“canonical” situation) while their control parameter is
the energy E (microcanonical situation).

Finally, concerning the domain of validity, our ap-
proach assumes that the domain size is larger than the
interfacial width L(u)/k given by equation (78) so that
A± ≥ (2L/k)2. This is satisfied on the left of the dashed
line in Figure 17 corresponding to

|B| ≤ u

(
1 − 8L(u)2

Ak2

)
. (136)

4 Analogy with Jupiter’s great red spot

4.1 The physical context

Vortices, waves and jets are ubiquitous in geophysical
and astrophysical flows. Studying Jupiter’s atmosphere is
particularly rewarding because it presents many types of
structures [39]: jet streams (belts and zones) flowing in
straight lines eastward or westward and giving the planet
a banded appearance, numerous long-lived anticyclones
such as the Great Red Spot at 23S, the White Oval at
33S and the Little Red Spot at 19N, less common cy-
clones such as the elongated Brown Barges at 14N, a
chain of 12 cyclones and 12 anticyclones at 41S (Kar-
man vortex street), vortices presenting large amplitude
east-west oscillations etc. In addition, Jupiter’s cloud-top
motions are easy to track from space providing detailed
measurments for the upper circulation of the planet and
for the velocity profiles of jets and vortices (several data
are provided by the two Voyager encounters in 1979).
Analogues of Jovian vortices have been reproduced in

laboratory experiments [40–42] and in numerical simula-
tions [43]. Long-lived vortices are also found in the at-
mosphere of other planets: Neptune’s Great Dark Spot,
Saturn’s spot, Earth’s atmospheric blocking highs, Gulf
Stream rings, Mediterranean salt lens etc. These vortices
are common features of rapidly rotating atmospheres and
oceans and their robustness demands a general under-
standing. Because the convection is weak and the planet’s
rotation is strong, the horizontal motions are approxi-
mately 2D via the Taylor-Proudman theorem. Therefore,
two-dimensional turbulence (possibly stratified) should be
the proper framework to tackle the problem.

Jupiter’s Great Red Spot (GRS) is probably the most
famous example of vortex structures found in planetary
atmospheres. The presence of this spot was first reported
by Robert Hooke in 1664 in the first issue of the Philo-
sophical Transaction of the Royal Society. The GRS is
a large “eye” that dominates the southern hemisphere
of the planet. It is an oval-shaped anticyclone with size
26 000 km by 13 000 km. Its breadth is about one hundred
times its height so it can be considered approximately
two-dimensional. It resides in a zonal shear at latitude
23S where the velocity changes sign, is elongated along
the shear zone and is of the same sign as the background
shear (these are relatively general rules observed for other
vortices). It stays at the same latitude but slowly drifts
in longitude. Morphologically, the GRS has a striking an-
nular structure with a quiet center surrounded by a thin
intense jet. The concentration of winds in an annulus is
consistent with the fact that the GRS is much larger than
the atmosphere’s radius of deformation (the jet’s width
scales with the Rossby radius of deformation).

Since the GRS coexists with strong turbulence, its
long-term stability can appear at first sights relatively sur-
prising. Different theories of the Great Red Spot have been
proposed over the years. The first hydrodynamic model for
the GRS was proposed by Hide in 1963 who suggested that
the spot could be a Taylor column on an isolated moun-
tain. The variable drift of the GRS is in contradiction with
this model. Also, there is now strong general astronomical
and physical evidence that the giant planets are essentially
fluid with only a relatively small solid core; hence Jovian
spots must be free vortices. Maxworthy and Redekopp [44]
examined the long wavelength limit of the Shallow-Water
equations to obtain the KdV and modified KdV equations.
They proposed that the GRS is a soliton solution of these
equations in which the effects of phase dispersion and am-
plitude dispersion (nonlinearity) are in precise balance.
However, this analytical model assumes that the struc-
tures are weakly nonlinear while the observed structures
have a highly nonlinear behaviour. Another drawback of
the soliton model is that it requires the radius of deforma-
tion to be of the same order as the spot width. In fact, the
radius of deformation is about 500–2500 km, much smaller
than the GRS. Therefore, this model does not account for
the thin annular structure of the vortex nor does it repro-
duce the 2:1 elliptical shape of the GRS. Finally, the soli-
ton theory predicts an interpenetration of vortices with-
out change of structure while the real interaction between
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vortices is a merging process. This is indeed a major prop-
erty of 2D turbulence. Unlike in 3D turbulence where the
energy cascades to smaller and smaller scales, in 2D the
energy cascades to larger scales (inverse cascade) [45]. In
other words, 2D vortices merge which explains the main-
tenance and robustness of large scale vortices. This point
was recognized in particular by Ingersoll and Cuong [46]
who argued that the GRS is Quasi-Geostrophic (QG) and
maintains itself against dissipation by absorbing smaller
vortices which are produced by convection.

A different point of view was advocated by
Williams [47] and Antipov et al. [41] who independently
proposed that the GRS is a solitary wave solution to the
Intermediate Geostrophic (IG) equations. This solitary
vortex can be obtained at scales much larger than the
radius of deformation. In addition, their theory and ex-
periments have the attractive property that anti-cyclones
are prefered over cyclones while the QG model of Inger-
soll and Cuong [46] does not make this seggregation. How-
ever, the IG model suffers from several drawbacks. First,
it predicts that the vorticity of the GRS should be Gaus-
sianly peaked at its center rather than in a circumpheren-
tial ring. In addition, IG theory predicts that the vortices
move west at the local Rossby long-wave speed while QG
theory and observations indicate that Jovian spots are ad-
vected by the background zonal flow. Marcus [43] argued
that a permanent vortex can coexist with turbulence and
that most of the properties of the Jovian vortices can be
easily explained and understood with QG theory. In ad-
dition, he emphasized the jet structure of the GRS and
showed that an annular jet is the natural structure of a
vortex with a uniform potential vorticity inside and out-
side the spot. Marcus conducted numerical simulations
in an anticyclonic annular shear. He observed that anti-
cyclonic vorticity always formed robust anticyclonic vor-
tices while cyclonic vortices were quickly stretched by the
shear. The main conclusion of the work of Marcus is that
the interaction of a vortex with turbulent eddies, rather
than destroying the vortex feeds it by the merging process.
Similar observations were made by Sommeria et al. [42] in
laboratory experiments.

If the robustness of the GRS is due to a mixing process,
it is natural to try to explain its structure and stability
in terms of statistical mechanics. A statistical mechan-
ics of two-dimensional vortices was first proposed by On-
sager [48] in the point vortex model. He showed that the
organization of point vortices in “macrovortices” occurs
at negative temperatures. His ideas were further devel-
oped by Joyce and Montgomery [49] and Lundgren and
Pointin [50] in a mean-field approximation. However, the
physical applications of the point vortex model are lim-
ited. The statistical mechanics approach was extended by
Kuz’min [51], Miller [24] and Robert and Sommeria [25]
for continuous vorticity flows described by the 2D Eu-
ler equation. This theory predicts the organization of 2D
turbulence into large-scale structures (jets and vortices)
similar to those observed in the atmospheres and oceans.
In particular, this theory is able to account for the “zool-
ogy” of vortices (monopoles, dipoles, tripoles,...) found in

two-dimensional flows [52]. A similar statistical approach
(theory of violent relaxation) was developed previously
by Lynden-Bell [23] for the Vlasov equation to explain
the structure of galaxies in the universe. The analogy be-
tween the statistical mechanics of 2D vortices and galaxies
has been discussed and developed by Chavanis [21,26].

The possibility of using the statistical theory to explain
the Great Red Spot was suggested at the start [24,25,53]
but explicit predictions have been made only recently for
a realistic model of the Jovian atmosphere proposed by
Dowling and Ingersoll [54]. Sommeria et al. [28] extended
the statistical theory to the QG model and investigated
the limit of small Rossby radius. In that limit, PV mix-
ing (entropic effects) with constraints on the energy leads
to an equilibrium state that consists of two phases with
uniform PV in contact separated by a strong jet. This
precisely accounts for the morphology of the GRS and
gives a theoretical justification to the model introduced
phenomenologically by Marcus [43]. The statistical theory
has been further developed by Bouchet and Sommeria [29]
with quantitative applications to Jovian vortices. These
authors interpreted the structure of the GRS as the co-
existence of two thermodynamical phases in contact. The
interface (jet) is determined by a problem of surface ten-
sion. The oval shape of the GRS is explained by the motion
of the deep fluid which acts as an “effective topography”.
The position of the spot is shown to coincide with the ex-
tremum of topography (i.e. the latitude at which the shear
vanishes) and the predicted velocity field agrees with the
measurments of the Voyager missions. Small deviations
in the initial parameters account for elongated structures
similar to the Brown Barges or the intense jets observed
in the north hemisphere. These results can be extended to
the more physical Shallow-Water system [55,56]. Another
model of Jupiter’s great red spot has been proposed by
Turkington et al. [57]. It predicts the emergence of a vor-
tex solution at the correct latitude but does not reproduce
the annular jet structure of the GRS [58].

4.2 Statistical mechanics of the quasi-geostrophic
equations

The quasi-geostrophic equations appropriate to the dy-
namics of geophysical flows [27] can be written:

∂q

∂t
+ u · ∇q = 0, (137)

q = −∆ψ +
ψ

R2
−Rh(y), u = −ẑ ×∇ψ. (138)

Here, q is the potential vorticity (PV) and ψ the stream
function (ẑ is a unit vector normal to the two-dimensional
flow). We have assumed that the topography Rh(y) scales
with the Rossby radius R. The QG equations admit an
infinite number of stationary solutions specified by any
relationship q = f(ψ). Starting from an unstable ini-
tial condition, the flow undergoes a turbulent mixing and
finally reaches a stationary state on the coarse-grained
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scale. For given initial conditions, the statistical theory
selects the most probable state consistent with the con-
straints imposed by the dynamics. It is obtained by maxi-
mizing a mixing entropy at fixed energy and Casimir con-
straints [24–26].

Let us consider the situation where the fine-grained
PV q takes only two values {a−1, a1}. It is convenient
to rescale the parameters so that (a1 − a−1)/2 = 1 and
(a1 + a−1)/2 = B. We also choose the Gauge condition
on ψ such that 〈q〉 = 0 [29]. Then, the total area occu-
pied by level a1 is A = (1 − B)/2 (the total area of the
domain is unity). In the two-levels approximation [24–26],
the mixing entropy is given by

S = −
∫

[p ln p+ (1 − p) ln(1 − p)]dr, (139)

where p(r) is the local probability density of level a1. The
coarse-grained PV is q = pa1 + (1 − p)a−1. The extrem-
ization of (139) at fixed energy

E =
1
2

∫
(q + h)ψdr =

1
2

∫ [
(∇ψ)2 +

ψ2

R2

]
dr, (140)

and total patch area A =
∫
p(r)dr leads to a q−ψ relation

of the form

q = B − tanh
(
α− Cψ

R2

)
, (141)

where α and C are Lagrange multipliers introduced in the
variational problem δS − 2αδA + C/R2δE = 0.

Robert and Sommeria [59] have proposed a parame-
terization of 2D turbulence in the form of a relaxation
equation for the coarse-grained PV q(r, t). This param-
eterization is based on a Maximum Entropy Production
Principle (MEPP). The diffusion current (due to turbulent
mixing) is assumed to maximize the rate of entropy pro-
duction Ṡ while conserving all the constraints imposed by
the dynamics. In the two-levels case, this yields a system
of equations of the form

∂q

∂t
+ u · ∇q = ∇ · [D (∇q + β(t)(a1 − q)(q − a−1)∇ψ)],

(142)

β(t) = −
∫
D∇q · ∇ψ dr∫

D(a1 − q)(q − a−1)(∇ψ)2 dr
, (143)

q = −∆ψ +
ψ

R2
−Rh(y). (144)

Interestingly, these drift-diffusion equations are similar to
the regularized chemotactic model (19–20) introduced in
this paper. In this analogy, the coarse-grained PV q plays
the role of the bacterial concentration and the stream
function ψ the role of the chemical c. The analogy be-
tween biological aggregates (chemotaxis) and 2D vortices
(geophysical turbulence) was noted in [5,18,20]. An im-
portant difference, however, is that in 2D turbulence the
energy is conserved so that the inverse temperature β(t)
evolves in time. By contrast, in the chemotactic problem,

we are in a situation where the “effective temperature”
Teff = 1/β is fixed. Therefore, 2D turbulence corresponds
to a microcanonical situation (where we maximize the en-
tropy S at fixed energy E) while chemotaxis corresponds
to a canonical situation (where we minimize an effective
free energy F = E − Teff S). These two situations are
considered in [18]. For long-range interactions (k = 0 or
R → +∞), the “statistical ensembles” (microcanonical
vs canonical) are generically inequivalent. However, for
short-range interactions (k → +∞ or R → 0), they be-
come equivalent.

The equilibrium problem (141–144) has been studied
in the limit of small Rossby radius R → 0. The original
idea dates back to Sommeria et al. [28] who understood
that, in this limit, the solution is made of two uniform PV
regions separated by a strong jet. This model has been
developed quantitatively by Bouchet and Sommeria [29]
with comparison to jovian data. Our study of the reg-
ularized chemotactic problem has been directly inspired
by these works. In complement, we have provided in Sec-
tion 3 a detailed study of the wall equation with use-
ful asymptotic expansions and analytical approximations.
Due to the analogy between the two problems, our results
can also be relevant to describe the jet structure of jo-
vian vortices, like GRS. In this respect, we recall that the
GRS corresponds to a typical parameter u in the range
0.92 ≤ u ≤ 1 [29] so that the limit u → 1 or T → 0 of
our study (Sects. 3.5, 3.7 and 3.8) is particularly inter-
esting in that respect. To strengthen the comparison be-
tween the two problems (chemotaxis and jovian vortices),
we briefly recall the main lines of the study of Bouchet
and Sommeria [29] and provide some complementary dis-
cussion.

4.3 Domain wall theory of Jupiter’s great red spot

4.3.1 The jet equation

Combining equations (144) and (141), we find that the
streamfunction satisfies the meanfield equation

−∆ψ +
ψ

R2
−Rh(y) = B − tanh

(
α− Cψ

R2

)
. (145)

We shall solve this equation perturbatively as an expan-
sion in powers of R. We only give the main lines and refer
to Bouchet and Sommeria [29] for more details and devel-
opements. To first order, we obtain the jet equation

−d
2ψ

dξ2
− 1
r

dψ

dξ
+

ψ

R2
−Rh(y) = B − tanh

(
α− Cψ

R2

)
,

(146)

where r is the curvature radius. Introducing the notations

τ = ξ/R, φ =
ψ

R2
− α

C
, (147)

we get

d2φ

dτ2
+
R

r

dφ

dτ
+Rh(y) = − tanh(Cφ) + φ+

α

C
−B.

(148)
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To leading order in R 
 1, the foregoing equation re-
duces to

d2φ

dτ2
= − tanh(Cφ) + φ+

α0

C
−B. (149)

The condition of solvability (see Sect. 3.2) implies that
α0 = CB so that the jet equation takes the form

d2φ

dτ2
= − tanh(Cφ) + φ = −U ′(φ). (150)

This is the same equation as equation (67) with C = 1/T .
In the present context, φ is related to the streamfunction
and v = dφ/dτ to the jet velocity. Therefore, the figures
representing the profile of concentration gradient in Sec-
tion 3 give the jet velocity profile in the present context.
The PV and streamfunction in the two phases are

q± =
ψ±
R2

= B ± u. (151)

Using 〈q〉 = 0, their area is given by

A± =
1
2

(
1 ∓ B

u

)
, (152)

which is similar to equation (134). Finally, in the present
context, the parameter u is determined by the energy ac-
cording to the relation

E =
1
2
R2(u2 −B2), (153)

obtained from equations (140, 151) and (152). The series
of equilibria β(E) is represented in Figure 18. It is uni-
valued confirming that the ensembles are equivalent.

4.3.2 The underlying shear

To first order in R, the jet equation becomes

d2φ

dτ2
+
R

r

dφ

dτ
+Rh(y) = −U ′(φ) +Rα1, (154)

where we have written α = α0 + Rα1 + ... and used the
fact that α0 = CB. Far from the jet where φ→ u, we can
neglect the derivatives so that

Rh(y) = −U ′(φ) +Rα1. (155)

Writing φ = u+Rδφ where δφ is a small perturbation, we
get to first order δφ = (α1 − h(y))/U ′′(u). Therefore, the
velocity of the shear around the vortex vshear = δφ′(y)ex

is given by

vshear =
h′(y)

−U ′′(u)
=

h′(y)
1 − C(1 − u2)

. (156)

Now, the analysis of the jet equation in Section 3.3 shows
that the function appearing in the denominator of equa-
tion (156) is related to the jet width (78). Therefore, we
get the relatively compact equation for the shear velocity

vshear(y) =
1
4
h′(y)L(u)2, (157)

expressed in terms of the topography and jet width. This
relation completes the analysis of [29].

0 0.2 0.4 0.6 0.8 1
2E/R

2
+B

2

0

1

2

3

4

5

C

B=Bc

B=0.1 B=0.2
B=0.3

Fig. 18. Caloric curve giving the inverse temperature C as a
function of the energy E for jovian vortices in the limit of small
radius of deformation R → 0. This curve is obtained from equa-
tions (153)-(69) in the absence of topography. In terms of the
variable 2E/R2 +B2, this curve is independent on B. We have
indicated by a ‘bullet’ the point of bifurcation (corresponding
to u = πB/(π−2); see Sect. 3.11) between a vortex (spot, left)
and a straight jet (stripe, right), for different values of B: 0.1,
0.2 and 0.3.

4.3.3 The curvature-topography relation

Finally, multiplying equation (154) by dφ/dτ and integrat-
ing accross the jet, we obtain

e(u)
r

= u(h(y) − α1), (158)

which relates the radius of curvature r to the underlying
topography h(y). For a given topography, equation (158)
determines the form of the jet. This problem has been
studied in detail in Bouchet and Sommeria [29] in the
case of a quadratic topography. As another example, we
consider here the inverse problem: given the form of the
jet, find the corresponding topography. We consider the
case of an elliptical vortex (see Fig. 19) because this is a
relatively good representation of Jupiter’s great red spot
and we can obtain analytical results in that case.

The topography leading to an elliptic vortex has the
form

h(y) =
H[

1 + (y/L)2
]3/2

, (159)

where L and H are typical horizontal and vertical length
scales. Assuming that this relation holds for |y| → +∞,
we must take α1 = 0 in equation (158) to have a van-
ishing curvature at infinity where h → 0. Therefore, the
curvature radius of the vortex is given by

Lχ

r
=

[
1 + (y/L)2

]−3/2

, (160)



P.H. Chavanis: Phase separation of bacterial colonies in a limit of high degradation 543

where we have defined χ = e(u)/uHL. This is the equa-
tion of an ellipse with major and minor semi-axis:

a =
Lχ

1 − χ2
, b =

Lχ√
1 − χ2

. (161)

These relations assume that χ ≤ 1. Now, in the case of
GRS, the aspect ratio

a

b
=

1√
1 − χ2

, (162)

is close to 2 leading to χ =
√

3/2. The major and minor
semi-axis are then given by a = 2

√
3L and b =

√
3L.

Consider now the limit χ→ 0. In that case, the width
of the vortex is small with respect to the horizontal topo-
graphic length (b 
 L) and we can make the quadratic
approximation

h(y) 	 H − 3
2
H

L2
y2. (163)

This is similar to the situation considered by Bouchet and
Sommeria [29]. Their parameter d is related to our pa-
rameter χ by d = (3/2)χ2. For a quadratic topography
with (χ, d) → 0, our study shows that the vortex shape
is an ellipse whose major and minor semi-axis are given
by equations (161). In particular, the aspect ratio behaves
like

a

b
= 1 +

d

3
+ ... (d→ 0). (164)

However, this formula is not applicable for a vortex with
aspect ratio ∼2 like GRS. In their approach, Bouchet and
Sommeria [29] assume a quadratic topography and solve
the curvature-topography relation numerically. For large
values of d, close to its maximal value dmax = 4/9, the
vortex is not an ellipse. Alternatively, if we assume a to-
pography of the form (159) we find an elliptic vortex for
all the values of χ ≤ 1. This suggests that the form of the
vortex is relatively sensitive to the underlying topography.

5 Connection to other works on chemotaxis

There is a huge literature on the chemotaxis problem in
the community of applied mathematics [16]. In this sec-
tion, we provide a short review of the history of the Keller-
Segel model and its generalizations so as to place our con-
tribution in a broader context. The discussion that we
provide here and in [5,20] emphasizes the physical results
and the connection between chemotaxis, self-gravitating
systems, 2D vortices, Bose-Einstein condensation, gen-
eralized thermodynamics, Burgers dynamics and Cahn-
Hilliard equations which is not developed in other reviews.

5.1 The Keller-Segel model and the formation
of Dirac peaks

In seminal papers, Patlak [2] and Keller and Segel [3] in-
troduced a mathematical formulation of the process of
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Fig. 19. Elliptic vortex with aspect ratio of 2 above a topog-
raphy of the form (159). The solid line represents the thin jet
separating the two regions with uniform potential vorticity.

chemotactic aggregation. They modeled the interaction
between the cellular slime molds (amoebae) and the chem-
ical substance (acrasin) produced by these organisms in
terms of the two coupled PDEs (1–2). The mechanism
proposed by Keller and Segel [3] for the initiation of cells
aggregation is described as a linear instability of the spa-
tially homogeneous equilibria of equations (1–2). Several
authors have then studied the nonlinear regime of the
aggregation process through the “reduced” Keller-Segel
model (3–4) where the diffusion coefficient and the chemo-
tactic sensitivity are constant. Nanjundiah [60] was the
first to suggest that the aggregation proceeds to the forma-
tion of delta-functions in cell density, a phenomenon later
referred to as “chemotactic collapse”. This possibility has
been studied in detail by Childress and Percus [61], Jäger
and Luckhaus [4], Nagai [62], Othmer and Stevens [63] and
Biler [64] among others. It is shown that blow-up never
occurs in one dimension (unless there is no diffusion of
the attractant). In two dimensions, there exists a critical
mass Mc such that if M > Mc then blow-up can occur
while there is no collapse for M < Mc. In three or more
dimensions, blow-up can occur even for small masses M .

To simplify the problem, Jäger and Luckhaus [4] con-
sidered a limit of high diffusivity of the chemical and
showed that equation (4) is then replaced by ∆c =
−λ(ρ − ρ) where λ = a/D′ and ρ = 1

V

∫
ρdr denotes

the average value of the density over the domain. In the
collapse regime where ρ � ρ, this relation reduces to a
Poisson equation ∆c = −λρ. The simplified Keller-Segel
model obtained by coupling equation (3) to this Poisson
equation has been studied by different authors. Herrero
and Velazquez [65] considered the problem in d = 2 and
showed, using matched asymptotic expansions, that for
M > Mc the system collapses to a Dirac peak in a fi-
nite time. Herrero et al. [66] considered the problem in
d = 3 and constructed a (non self-similar) solution consist-
ing of an imploding, smoothed-out, shock that collapses
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into a Dirac mass when the singularity is formed. Herrero
et al. [67] and Brenner et al. [68] constructed self-similar
solutions of the chemotactic collapse in d = 3. However,
these solutions do not lead to a concentration of mass
(Dirac peak) at the origin.

Independently, Chavanis and Sire [6–14] introduced
and systematically studied the dynamics and the thermo-
dynamics of a system of self-gravitating Brownian parti-
cles. They considered a mean-field approximation (which
is exact in a properly defined thermodynamic limit N →
+∞ with Λ = −ERd−2/GM2 and η = βGMm/Rd−2

fixed [30,31]) and a strong friction regime ξ → +∞ where
the dynamics reduces to the study of the Smoluchowski-
Poisson system. In the course of their study, they realized
that the Smoluchowski-Poisson system was isomorphic to
the simplified version of the Keller-Segel model described
above so that their results apply equally well to biological
populations by a proper re-interpretation of the param-
eters [5]. They also showed the analogy with the Bose-
Einstein condensation in the canonical ensemble [19,20]
and with the statistical mechanics of two-dimensional vor-
tices [5,20]. In [6,7], they studied the structure and the
stability of equilibrium solutions of the Smoluchowski-
Poisson system confined within a box (corresponding to
isothermal self-gravitating spheres) and showed that, in
d ≥ 2, these solutions exist only above a critical temper-
ature Tc. For T < Tc, there is no steady state and the
system undergoes an isothermal collapse. In d > 2, they
constructed analytically self-similar collapse solutions that
lead to a finite time singularity (the density profile be-
haves like ρ ∝ 1/r2 at t = tcoll). This self-similar col-
lapse [6,7] does not lead to a concentration of mass at the
origin (Dirac peak) but it was shown in [9] that a Dirac
peak is formed in the post-collapse regime of the dynam-
ics, after the singularity has arisen. The dependence of
the collapse time tcoll ∼ (Tc −T )−1/2 with the distance to
the critical temperature was obtained analytically in [10].
Since the self-similar solutions are expected to describe
the collapse below the critical temperature Tc, the collapse
time diverges when T → T−

c indicating the existence of a
stable gaseous phase above Tc. Indeed, for T > Tc, it is
found numerically [6] that, under normal circumstances,
the system tends to an equilibrium state. Collapse can also
occur above Tc but this demands very particular initial
conditions. These two possible regimes (collapse or conver-
gence to an equilibrium state) arise because the gaseous
equilibrium solutions are only local minima of free energy
(long-lived metastable states) while the collapse solutions
ultimately lead to Dirac peaks with infinite free energy
(global minima of free energy) [7]. The choice between
these two regimes then depends on a complicated notion
of basin of attraction [6]. In d = 2, it is shown in [7] that
collapse occurs below a critical temperature Tc and leads
to a Dirac peak containing a fraction T/Tc of the total
mass surrounded by a density profile (halo) evolving al-
most self-similarly2. From the Virial theorem [13], it can

2 With the notations of biology appropriate to the Keller-
Segel model, this solution corresponds to the formation of a
Dirac peak containing a mass Mc (the critical mass in d = 2)

be shown that the Dirac peak accretes the rest of the mass
in the post-collapse regime. At T = Tc, the evolution is
self-similar and a Dirac peak containing the whole mass is
formed in infinite time. In a bounded domain, the central
density increases exponentially with time [7]. For T > Tc,
the system reaches an equilibrium state which is a global
minimum of free energy. In d = 1, there is no collapse (ex-
cept at T = 0) and the evolution of the mass profile satis-
fies a Burgers equation. The case of an unbounded domain
has been studied by Chavanis and Sire [13,14]. For d > 2,
they showed that the system can either collapse (like in
a box) or undergo a diffusion process (evaporation). They
determined the correction to pure diffusion due to the
gravitational attraction and showed that self-gravity be-
comes negligible for large times. For d = 2, they deter-
mined the exact diffusion coefficient of the self-gravitating
Brownian gas. This diffusion coefficient becomes negative
below the critical temperature Tc leading to the forma-
tion, in a finite time, of a Dirac peak containing the whole
mass. At T = Tc, the Dirac peak is formed in infinite time
and the central density increases logarithmically [13] with
time instead of exponentially [7] in a bounded domain.
A tiny amount of mass is ejected at large distances so as
to satisfy the conservation of the moment of inertia. For
T > Tc, the system evaporates. This process is self-similar
and it has been studied analytically [13] for T � Tc and
T → T+

c . For d = 1, the system reaches an equilibrium
state.

5.2 Many-body models of chemotaxis and statistical
fluctuations

The Keller-Segel model (3–4) is a continuous model where
the evolution of the distribution of cells is described by a
smooth density field. Several authors have tried to derive
this model from a more microscopic approach (N -body
system) to better determine its domain of validity.

Schweitzer and Schimansky-Geier [69] introduced a
stochastic model of Brownian particles in interaction
that they called active walkers. The walkers are able
to change locally the potential in which they move by
producing a second component B. The nonlinear feed-
back between the density distribution of both compo-
nents results in a clustering of the walkers. Schweitzer and
Schimansky-Geier [69] studied their agglomeration on a
two-dimensional surface. Their description is based on a
set of Langevin and Fokker-Planck equation for the active
walkers, coupled by a reaction-diffusion equation for the
component B. The Fokker-Planck equation, obtained in
a mean-field approximation (which is not rigorously jus-
tified in their work), is similar to the Keller-Segel model.
Apparently, these authors were not aware of that model

surrounded by a density profile evolving almost self-similarly.
This solution, vindicated by direct numerical simulations of
the Smoluchowski-Poisson system [7], is different from the one
given by Herrero and Velazquez [65]. The reason for this dis-
crepancy is not well understood but it is possible that the
solution of [65] is unstable.
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since it is not referenced. They made contact, however, to
the general process of chemotaxis in biology.

Stevens [70] rigorously derived the PDEs of the Keller-
Segel model from an interacting stochastic many-particles
system, where the interaction between the particles is
rescaled in a moderate way as population size tends to
infinity.

Newman and Griman [71] developed a many-body the-
ory of cell-cell interactions. They used methods of statis-
tical physics and field theory and derived an exact kinetic
equation for the one-body probability distribution involv-
ing the two-body distribution. In the mean-field limit,
where statistical correlations between cells are neglected,
the deterministic Keller-Segel equations (3, 4) are recov-
ered. They also took into account statistical correlations
and described them by a perturbation theory in the limit
of weak coupling. This leads to a renormalization of the
cell diffusion coefficient. Following this work, Grima [72]
introduced a non-perturbative approach to compute the
diffusion coefficient and discussed the similarities and the
differences between the stochastic models and their deter-
ministic (mean field) counterparts.

Chavanis [30,31] (see also [5,14,32]) studied stochas-
tic models of Brownian particles coupled by a weak long-
range binary potential of interaction. Such models de-
scribe in particular self-gravitating Brownian particles and
biological populations (in simplified settings). Both iner-
tial and overdamped systems are treated while other stud-
ies consider a strong friction limit ξ → +∞ (or a limit of
large times t � ξ−1). A hierarchy of kinetic equations
for the reduced probability distributions is derived in [31]
and the mean-field Kramers and mean-field Smoluchowski
equations are obtained in the large N limit where the cor-
relations are found to become negligible (the proper ther-
modynamic limit corresponds to N → +∞ in such a way
that the coupling constant k ∼ 1/N with energy E ∼ N ,
temperature T ∼ 1 and volume V ∼ 1). For a Newtonian
potential of interaction, this leads to the Smoluchowski-
Poisson system describing self-gravitating Brownian par-
ticles. This also corresponds to the simplified version of
the Keller-Segel model describing biological populations.
This study shows that the mean-field approximation pro-
vides a very good description of systems with long-range
interactions, provided that N is sufficiently large (it be-
comes exact in the thermodynamic limitN → +∞ defined
above).

5.3 The regularized Keller-Segel model
and the formation of smooth aggregates

The “reduced” Keller-Segel model (3–4) ultimately leads
to the formation of Dirac peaks. Since these singularities
are unphysical, several authors have introduced regular-
ized versions of the Keller-Segel model where the Dirac
peaks are replaced by smooth aggregates with bounded
density. These regularized models are particular cases of
the “primitive” Keller-Segel model (1–2).

Hillen and Painter [73] studied a version of the Keller-
Segel model where the chemotactic sensitivity depends on

both the external signal and the local population density.
In the case where the chemotactic response is switched off
at high cell densities (due to volume filling) they showed
that there is no finite time blow-up of the solutions but
rather formation of stable aggregates. They could prove
therefore local and global existence in time of classical
solutions. Painter and Hillen [74] pursued their investiga-
tion and derived the Keller-Segel equation from a mas-
ter equation for a continuous-time discrete-space random
walk on a one-dimensional lattice. The model where the
chemotactic sensitivity depends on the local population
density is obtained by allowing the probability of jump-
ing into neighbouring sites to depend on the amount of
space available at that site. They performed numerical
simulations showing the formation of aggregates that pro-
gressively merge until only one structure remains at the
end.

Independently, in the context of generalized thermo-
dynamics pioneered by Tsallis [75], some authors have in-
troduced a class of nonlinear Fokker-Planck equations as-
sociated with non-standard equilibrium distributions [18,
36,76,77]. These equations can be obtained from usual
Fokker-Planck equations by allowing the diffusion coef-
ficient and the friction force (or the mobility for over-
damped models) to depend on the concentration of par-
ticles. Chavanis [18] considered situations where these
generalized Fokker-Planck equations are furthermore cou-
pled to a mean-field potential and mentioned applica-
tions to chemotaxis. Indeed, the regularized Keller-Segel
model (19–20) where the chemotactic sensitivity depends
on the local population density appears to be a special
class of these general equations (we can also consider mod-
els where the diffusion coefficient depends on the den-
sity as in [8,78]). These nonlinear Fokker-Planck equa-
tions have a generalized thermodynamical structure [18].
They can be derived from a generalized class of stochastic
equations [18] or from a master equation by allowing the
probability of transition to depend on the concentration
in the initial and arrival sites [36]. This is equivalent to
the arguments of Painter and Hillen [74]. Therefore, the
derivation of the regularized model given in Section 2.3
can be viewed as an alternative to the one given by Painter
and Hillen [74]. The particular case where the chemotac-
tic sensitivity is proportional to ρ(1− ρ/σ0) was proposed
in [5,18] on the basis of phenomenological arguments, as a
simple regularization of the Keller-Segel model preventing
blow-up. Using an analogy with self-gravitating fermions
and two-dimensional vortices [26,79], it was argued in [5]
that the density remains always bounded by σ0 (this is
obvious at equilibrium) so that this model leads to stable
aggregates instead of Dirac peaks. With such a regular-
ization, the dynamics of the Keller-Segel model is similar
to a coarsening dynamics in phase ordering kinetics [17].
Indeed, starting from a random initial condition, domains
(aggregates) spontaneously form and grow until only one
big structure remains. This analogy can be made more
precise by noting (see [22]) that, in the limit of short-
range interactions, the Keller-Segel model can be put in
a form similar to the Cahn-Hilliard equation. In fact, the
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Keller-Segel model can be viewed as a generalization of
the Cahn-Hilliard equation to the case of systems with
long-range interactions.

Finally, in a recent work, Holm and Putkaradze [80,81]
considered a drift-diffusion model3 where the mobility of
the particles depends on the configuration of their neigh-
bors and linear diffusion acts on locally averaged particle
density ρ. In the absence of diffusion (D = 0), they showed
that Dirac peaks (clumpons) emerge from smooth initial
conditions and that the evolution of these clumpons is
governed by a system of N differential equations. When
the mobility vanishes for some averaged density ρ∗, the
clumpons are replaced by jammed patches (a weak so-
lution with the density having compact support). Holm
and Putkaradze [81] constructed stationary solutions of
their model in which the density forms a plateau with
ρ = ρ∗ in the core and ρ = 0 outside. They showed that
the interface can have several shapes: stripes, circles, el-
lipses, parabolae and hyperbolae. This type of solutions
where the core density reaches its maximum value ρ∗ cor-
responds to the zero temperature limit of our model. In
that case, the Fermi-Dirac distribution (21) reduces to the
Heaviside function where ρ passes from σ0 to 0. In this
T = 0 limit, it is possible to construct analytical solutions
of equations (21–20) for arbitrary value of the screening
length k−1. Various frontier shapes can be obtained in
agreement with the results of Holm and Putkaradze [81].
This is not in contradiction with the results of the present
study where we consider another limit. Indeed, we treat
arbitrary values of the temperature (or diffusion coeffi-

3 In their “Historical perspective of continuum models of
self-aggregation” (Sect. 1), Holm and Putkaradze [81] at-
tribute the study of the Smoluchowski-Poisson system to Chan-
drasekhar [82], although Chandrasekhar never considered the
coupling between the Smoluchowski and the Poisson equa-
tions. In his classical work on stellar dynamics, Chandrasekhar
studied the relaxation of a test star in a thermal bath of field
stars with frozen distribution function, by developing an anal-
ogy with Brownian theory [83]. This leads to the Kramers
equation with a fixed external potential Φ(r). Chandrasekhar
furthermore assumed that the distribution of the field stars
is infinite and homogeneous (so that Φ = 0) and used the
Kramers equation to determine the rate of escape of stars from
a globular cluster. It would be tempting to describe the dy-
namical evolution of the stellar system “as a whole” by the
Kramers-Poisson or Smoluchowski-Poisson equations (see com-
ments of Chandrasekhar [83] in Sect. 4.). However, these equa-
tions cannot rigorously describe a stellar system, which has
a Hamiltonian structure, since they do not conserve energy.
This is probably why these equations have never been consid-
ered in astrophysics. The correct kinetic equation for a stellar
system is the Landau-Poisson system [84,85] which conserves
energy and which is therefore appropriate to a Hamiltonian sys-
tem described by the microcanonical ensemble. The Kramers-
Poisson and Smoluchowski-Poisson equations have been intro-
duced in [6–14] for a self-gravitating Brownian gas, not a stel-
lar system, which is described by the canonical ensemble where
the temperature is fixed. The distinction between the kinetic
theory of Hamiltonian and Brownian systems of particles with
long-range interactions is further discussed in [30,31].

cient D) but we focus on short range interactions where
k → +∞. In that case, the steady states exhibit a density
plateau with ρ = ρmax < σ0 in the core and ρ = ρmin > 0
outside. Then, minimization of free energy (see Sect. 3.10)
implies that the interface must be either a stripe or a
circle.

6 Conclusion

In this paper, we have studied the equilibrium states of
a regularized version of the Keller-Segel model describing
the chemotactic aggregation of bacterial colonies. The reg-
ularization is justified physically in order to avoid the for-
mation of singularities (Dirac peaks) during the dynamics
and obtain smooth density profiles (aggregates) instead.
This regularization accounts for finite size effects and close
packing effects. In that case, an equilibrium state exists
for any value of the control parameter contrary to the
usual Keller-Segel model leading to blow-up (this is similar
to considering a gas of self-gravitating fermions in astro-
physics to avoid singularities corresponding to complete
gravitational collapse [79]). We have studied furthermore
a limit of high degradation of the chemical k → +∞. In
previous works [6–14], the opposite limit k = 0 (no degra-
dation) was considered instead. The intermediate case of a
finite degradation rate, which is certainly the case of most
physical interest, must be studied numerically (in prepa-
ration). However, the asymptotic limit k → +∞ allows us
to obtain analytical results that permit to have a clear
picture of the bifurcation diagram (between spots and
stripes) in parameter space. Furthermore, our approach is
exact in one dimension, for any value of the degradation
rate k. Our study shows that the physics of the problem
is sensibly different whether k 
 1 or k � 1.

We have also discussed the analogy between the orga-
nization of bacteria (in stripes and spots) in the chemo-
tactic problem and the organization of two-dimensional
turbulent flows (in jets and vortices) in the jovian atmo-
sphere. These apparently completely different systems are
described by relatively similar equations so that an inter-
esting analogy can be developed between them. In this
analogy, the jet structure of Jupiter’s great red spot can
be seen as a ‘domain wall’ that is similar to the inter-
face separating two phases in contact, as in the biological
problem when k � 1.

We would like to conclude this paper on some possible
applications of our results in biology. Models of chemo-
taxis have been successfully applied to many systems, in-
cluding aggregation patterns in bacteria [87–89], fish skin
pigmentation patterns [90], angiogenesis in tumour pro-
gression and wound healing [91–93], and many other ex-
amples. In particular, bacteria such as E. coli have been
shown to form a range of patterns such as rings and spots.
The shapes of these structures are consistent with those
found in the present study. Other examples of applica-
tion are given by Painter and Hillen [74]. Network pat-
terns have also been observed in recent experiments of in
vitro formation in blood vessels. They are interpreted as
the beginning of a vasculature, a phenomenon responsible
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of angiogenesis, a major actor for the growth of tumors.
However, these connected vascular networks cannot be ex-
plained by parabolic models of the Keller-Segel type. They
are explained in general in terms of hyperbolic models
(similar to hydrodynamic equations) [86,94]. The mathe-
matical study of these chemotactic models can shed light
on the diversity of patterns observed in biology. These bio-
physical structures, together with galaxies in astrophysics
and vortices in two-dimensional turbulent flows [21], are
striking examples of self-organization in nonlinear media,
due to the long-range attraction of a potential of interac-
tion.

Appendix A: Stability analysis

We study the linear dynamical stability of an infinite
and homogeneous solution of the regularized Keller-Segel
model (19–20). The unperturbed solution satisfies

k2c = λρ. (165)

Linearizing equations (19, 20) around this steady state
and writing the perturbation as δρ = δρ̂eiq·reσt, δc =
δĉeiq·reσt, we obtain

χρ(1 − ρ/σ0)q2δĉ− (Dq2 + σ)δρ̂ = 0, (166)

(q2 + k2)δĉ− λδρ̂ = 0. (167)

This system of equations admits non-trivial solutions only
if the determinant is zero yielding the dispersion relation

σ = q2
(
χλρ(1 − ρ/σ0)

q2 + k2
−D

)
. (168)

The system is unstable if σ > 0 and stable otherwise. A
necessary condition of instability is

χ

D
λρ(1 − ρ/σ0) − k2 ≥ 0. (169)

If this condition is fulfilled, the unstable wavenumbers are

q2 ≤ χ

D
λρ(1 − ρσ0) − k2 ≡ q2max. (170)

For u = 0, i.e. ρ = σ0/2 (see Sect. 3), we find that the
instability criterion (169) corresponds to

T ≤ Tc = 1. (171)

Therefore, the uniform phase u = 0 is stable for T > Tc

and unstable for T < Tc where it is replaced by a ‘stripe’
or a ‘spot’ formed in the nonlinear regime (see Fig. 2).
The unstable wavenumbers are

q2 ≤ (C − 1)k2 ≡ q2max, (172)

where we recall that C = 1/T . The growth rate (see
Fig. A.1) can be written

σ = Dq2
(

Ck2

q2 + k2
− 1

)
. (173)
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Fig. A.1. Growth rate of the perturbation as a function of the
wavenumber for T = 1/2 < Tc.

The maximum growth rate is obtained for

q2∗ = k2(
√
C − 1), (174)

and its value is

σ∗ = Dk2(
√
C − 1)2. (175)

A more general linear dynamical stability analysis of
the Keller-Segel model (and generalizations) is performed
in [86].

Appendix B: Surface tension for T → 0

Using equations (81) and (73), the surface tension can be
written

σ = 2
∫ u

0

(φ2 − 2T ln [cosh(φ/T )]

− u2 + 2T ln [cosh(u/T )])1/2dφ. (176)

Using

ln [cosh(φ/T )] = φ/T − ln 2 + ln(1 + e−2φ/T ), (177)

and considering the limit T → 0, we obtain

σ = 2
∫ 1

0

√
(1 − φ)2 − 2T ln(1 − e−2/T + e−2φ/T )dφ.

(178)

Setting x = 1 − φ, this can be rewritten

σ = 2
∫ 1

0

x

√
1 − 2T

x2
ln

[
1 + e−2/T (e2x/T − 1)

]
dx.

(179)
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For T → 0, we obtain

σ = 2
∫ 1

0

x

(
1 − T

x2
ln

[
1 + e−2/T (e2x/T − 1)

])
dx.

(180)

Setting y = 2x/T , we find that

σ = 1 − 2T
∫ 2/T

0

ln
[
1 + e−2/T (ey − 1)

] dy
y
.

(181)

Setting x = 2/T − y, we get

σ = 1 − 2T
∫ 2/T

0

ln
[
1 + e−2/T (e2/T−x − 1)

] dx

2/T − x
.

(182)

For T → 0, we finally obtain

σ = 1 − T 2

∫ +∞

0

ln
(
1 + e−x

)
dx.

(183)

Using
∫ +∞

0

ln
(
1 + e−x

)
dx =

π2

12
, (184)

we establish equation (97).
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4. W. Jäger, S. Luckhaus, Trans. Amer. Math. Soc. 329, 819

(1992)
5. P.H. Chavanis, M. Ribot, C. Rosier, C. Sire, Banach Center

Publ. 66, 103 (2004)
6. P.H. Chavanis, C. Rosier, C. Sire, Phys. Rev. E 66, 036105

(2002)
7. C. Sire, P.H. Chavanis, Phys. Rev. E 66, 046133 (2002)
8. P.H. Chavanis, C. Sire, Phys. Rev. E 69, 016116 (2004)
9. C. Sire, P.H. Chavanis, Phys. Rev. E 69, 066109 (2004)

10. P.H. Chavanis, C. Sire, Phys. Rev. E 70, 026115 (2004)
11. C. Sire, P.H. Chavanis, Banach Center Publ. 66, 287

(2004)
12. J. Sopik, C. Sire, P.H. Chavanis, Phys. Rev. E 72, 026105

(2005)
13. P.H. Chavanis, C. Sire, Phys. Rev. E 73, 066103 (2006)
14. P.H. Chavanis, C. Sire, Phys. Rev. E 73, 066104 (2006)
15. P.H. Chavanis, preprint
16. D. Horstmann, Jahresberichte der DMV 106, 51 (2004)
17. A. Bray, Adv. Phys. 43, 357 (1994)
18. P.H. Chavanis, Phys. Rev. E 68, 036108 (2003)
19. J. Sopik, C. Sire, P.H. Chavanis, Phys. Rev. E 74, 011112

(2006)

20. P.H. Chavanis, C. R. Physique 7, 318 (2006)
21. P.H. Chavanis, in Dynamics and thermodynamics of sys-

tems with long range interactions, edited by T. Dauxois, S.
Ruffo, E. Arimondo, M. Wilkens, Lecture Notes in Physics
(Springer, 2002), e-print arXiv:cond-mat/0212223

22. P.H. Chavanis, P. Laurençot, M. Lemou, Physica A 341,
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